Existence and stability of noncharacteristic boundary-layers for the compressible Navier-Stokes and viscous MHD equations
نویسندگان
چکیده
For a general class of hyperbolic-parabolic systems including the compressible NavierStokes and compressible MHD equations, we prove existence and stability of noncharacteristic viscous boundary layers for a variety of boundary conditions including classical Navier-Stokes boundary conditions. Our first main result, using the abstract framework established by the authors in the companion work [GMWZ6], is to show that existence and stability of arbitrary amplitude exact boundary-layer solutions follow from a uniform spectral stability condition on layer profiles that is expressible in terms of an Evans function (uniform Evans stability). Whenever this condition holds we give a rigorous description of the small viscosity limit as the solution of a hyperbolic problem with “residual” boundary conditions. Our second is to show that uniform Evans stability for small-amplitude layers is equivalent to Evans stability of the limiting constant layer, which in turn can be checked by a linear-algebraic computation. Finally, for a class of symmetric-dissipative systems including the physical examples mentioned above, we carry out energy estimates showing that constant (and thus small-amplitude) layers always satisfy uniform Evans stability. This yields existence of small-amplitude multidimensional boundary layers for the compressible Navier-Stokes and MHD equations. For both equations these appear to be the first such results in the compressible case.
منابع مشابه
Long-time Stability of Noncharacteristic Viscous Boundary Layers
We report our results on long-time stability of multi–dimensional noncharacteristic boundary layers of a class of hyperbolic–parabolic systems including the compressible Navier–Stokes equations with inflow [outflow] boundary conditions, under the assumption of strong spectral, or uniform Evans, stability. Evans stability has been verified for small-amplitude layers by Guès, Métivier, Williams, ...
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملSpectral Stability of Noncharacteristic Isentropic Navier–Stokes Boundary Layers
Building on the work of Barker, Humpherys, Lafitte, Rudd, and Zumbrun in the shock wave case, we study stability of compressive, or shock-like, boundary layers of the isentropic compressible Navier–Stokes equations with γ -law pressure by a combination of asymptotic ODE estimates and numerical Evans function computations. Our analytical results include convergence of the Evans function in the s...
متن کاملLong-time Stability of Large-amplitude Noncharacteristic Boundary Layers for Hyperbolic–parabolic Systems
Extending investigations of Yarahmadian and Zumbrun in the strictly parabolic case, we study time-asymptotic stability of arbitrary (possibly large) amplitude noncharacteristic boundary layers of a class of hyperbolic-parabolic systems including the Navier–Stokes equations of compressible gasand magnetohydrodynamics, establishing that linear and nonlinear stability are both equivalent to an Eva...
متن کاملStability of Boundary Layers for the Nonisentropic Compressible Circularly Symmetric 2D Flow
In this paper, we study the asymptotic behavior of the circularly symmetric solution to the initial boundary value problem of the compressible non-isentropic Navier-Stokes equations in a two-dimensional exterior domain with impermeable boundary condition when the viscosities and the heat conduction coefficient tend to zero. By multi-scale analysis, we obtain that away from the boundary the comp...
متن کامل